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A core–annular flow, the concurrent axial flow of two immiscible fluids in a circular
tube or pore with one fluid in the core and the other in the wetting annular region,
is frequently used to model technologically important flows, e.g. in liquid–liquid dis-
placements in secondary oil recovery. Most of the existing literature assumes that the
pores in which such flows occur are uniform circular cylinders, and examine the inter-
facial stability of such systems as a function of fluid and interfacial properties. Since
real rock pores possess a more complex geometry, the companion paper examined the
linear stability of core–annular flows in axisymmetric, corrugated pores in the limit
of asymptotically weak corrugation. It found that short-wave disturbances that were
stable in straight tubes could couple to the wall’s periodicity to excite unstable long
waves. In this paper, we follow the evolution of the axisymmetric, linearly unstable
waves for fluids of equal densities in a corrugated tube into the weakly nonlinear
regime. Here, we ask whether this continual generation of new disturbances by the
coupling to the wall’s periodicity can overcome the nonlinear saturation mechanism
that relies on the nonlinear (kinematic-condition-derived) wave steepening of the
Kuramoto–Sivashinsky (KS) equation. If it cannot, and the unstable waves still sat-
urate, then do these additional excited waves make the KS solutions more likely
to be chaotic, or does the dispersion introduced into the growth rate correction by
capillarity serve to regularize otherwise chaotic motions?

We find that in the usual strong surface tension limit, the saturation mechanism of
the KS mechanism remains able to saturate all disturbances. Moreover, an additional
capillary-derived nonlinear term seems to favour regular travelling waves over chaos,
and corrugation adds a temporal periodicity to the waves associated with their
periodical traversing of the wall’s crests and troughs. For even larger surface tensions,
capillarity dominates over convection and a weakly nonlinear version of Hammond’s
no-flow equation results; this equation, with or without corrugation, suggests further
growth. Finally, for a weaker surface tension, the leading-order base flow interface
follows the wall’s shape. The corrugation-derived excited waves appear able to push
an otherwise regular travelling wave solution to KS to become chaotic, whereas
its dispersive properties in this limit seem insufficiently strong to regularize chaotic
motions.

1. Introduction
Core–annular flows (CAFs), the two-phase flow configuration where one fluid

occupies a cylindrical region, surrounded by an annulus of a second fluid, which is
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immiscible with the first, have recently been used as model systems for improving many
technologies such as liquid–liquid displacements in secondary oil recovery (Slattery
1974) and understanding respiratory distress in the lung, including surfactant transport
(Johnson et al. 1991; Halpern & Grotberg 1993; Otis et al. 1993). In secondary oil
recovery, typically an aqueous phase of low tension with water is introduced to
displace oil lodged in rock pores. The displacement takes the form of a winding train
of long slugs of the non-wetting fluid separated by pools of the wetting fluid and
riding over a thin cushion of the wetting fluid. The rock determines which fluid is
more wetting. In either case the train velocities are slow enough that the capillary
number (the product of the slug velocity and the wetting layer viscosity divided by
the interfacial tension) and the Reynolds number (base on either phase) are much
less than one. For such cases the asymptotic theory of Bretherton (1961) predicts a
ratio of wetting-layer thickness to pore radius proportional to Ca2/3. Far from the
edge of the slug, the flow resembles a core–annular flow. Should instabilities cause
the film to rupture, thereby bringing the non-wetting fluid in contact with the wall,
slow or inhibited respreading of the wetting layer can significantly inhibit the overall
train mobility.

Many premature babies as well as adults afflicted by diseases such as adult respira-
tory distress syndrome lack a functioning surfactant normally produced by alveolar
type II epithelial cells (Kamm & Schroter 1989; Otis et al. 1993); this condition leads
to impaired breathing. Lung bronchioli are tubelike structures that branch out into
many generations, and this array of vastly different sized tubes expands and contracts
during breathing. A thin layer of fluid (varying from water to mucus) coats the inside
of these tubes. In the absence of effective surfactants, either the tube walls themselves
can collapse or a hydrodynamic instability can transform the fluid layer into a lens
which can block the flow of air and decrease the effective lung volume. Such col-
lapse appears to take place first in the terminal (small) bronchioles during exhalation
(Johnson et al. 1991). Breathing induces very slow flow in this layer, and the system
resembles a gas-core core–annular flow. Since even a slow viscous flow can compete
with surface tension to determine the system’s stability (Papageorgiou, Maldarelli &
Rumschitzki 1990; Georgiou et al. 1992), this problem is a subject of interest.

A perfect (the cylinder and the annulus are coaxial) core–annular flow (PCAF) in
a straight, circular tube of uniform cross-section is often adopted as an ideal model
on which most studies are based. Understanding the mechanism of instability in this
system is important because we may want to encourage or discourage instability
depending on the application. The linear stability, for both the case with and without
a base flow, is characterized by capillarity, viscosity stratification and density strat-
ification. Infinitesimal disturbances arise at the fluid–fluid interface and they may
grow or be damped. Capillarity, which stabilizes short waves and destabilizes long
waves, generally plays the most decisive role in determining the interfacial stability
in the cylindrical geometry and in particular in the CAF. A whole literature (see § 2)
has led to a detailed understanding of how fluid and interfacial properties affect the
system’s linear and nonlinear stability in the PCAF configuration, particularly in the
strong-surface-tension regime.

However, in applications such as liquid–liquid displacements in rock pores or
lung respiration the assumption of uniform tube radius is inappropriate, and it
is worth examining whether the coupling of this geometric factor is (at least) as
important as the other effects already considered. In the companion paper (Wei &
Rumschitzki 2002, hereinafter referred to as WR), we develop an asymptotic theory
for the effect of a slight corrugation on the (base flow and the) linear stability
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of a CAF and find that the coupling of short-wave interfacial disturbances to the
pore wall’s corrugation harmonics excites unstable long waves. Yet in PCAF theory,
weakly nonlinear contributions steepen, and thereby shorten, linearly growing long
waves, resulting in their stabilization due to capillarity. The goal of this paper is to
examine these opposing trends in the weakly nonlinear regime of a slightly corrugated
CAF. We begin with a brief literature review, followed by problem formulation and
scalings, leading to the equation governing the system’s weakly nonlinear evolution
for a particular parameter regime. Numerical solution of this equation and discussion
of the results then precede a brief summary.

2. Literature and motivation
As noted, capillarity is generally the most important factor in the cylindrical

geometry. Capillarity acts in two ways: it destabilizes the interfacial circumferential
curvature and stabilizes the longitudinal curvature of an interfacial deflection. The
result of this competition is that disturbances with wavelengths shorter than the
undisturbed interfacial circumference are linearly stable and those longer are linearly
unstable owing to capillarity. In the presence of a base flow in a PCAF, capillarity
and viscosity (and density in the vertical arrangement) stratification compete, and
Joseph and coworkers (Hu & Joseph 1989; Preziosi, Chen & Joseph 1989; Chen,
Bai & Joseph 1990) have performed extensive investigations of CAFs by numerically
solving the Orr–Sommerfeld equation. They have found for the parameter regime
characteristic of lubricated pipelining (Preziosi et al. 1989) that viscosity stratification
can stabilize the long-wave destabilization of capillarity at large enough, but not too
large, Reynolds numbers. There exists a window of stability in Reynolds number space
in which the CAF is linearly stable. For most applications of interest, the thickness
of the annular fluid is much smaller than the tube radius. As such, Georgiou et al.
(1992) have developed thin-film asymptotics (in the small ratio ε of the undisturbed
annulus thickness to core radius) to examine analytically the linear stability of a
PCAF in a vertical arrangement. With axisymmetric disturbances whose wavelengths
are comparable to the tube circumference, they have shown analytically that viscosity
stratification can stabilize the capillary instability for the ratio m < 1 of annulus-to-
core fluid viscosities, whereas it is destabilizing for m > 1.

Study of the nonlinear stability regime of these thin-film systems is important for
a better understanding of the system’s response to disturbances of finite magnitude
as well as to investigate the fate of linearly unstable waves. Hammond (1985) studied
the two-fluid CAF in a tube with a thin annular film is the absence of a base flow, for
which the core dynamics become irrelevant at leading order in the ratio ε of the film
thickness to the undisturbed core radius. His nonlinear analysis showed that long-wave
disturbances can grow nonlinearly and this suggests that they could potentially lead
to film breakup into lenses when sufficient liquid is present. However, the extent of the
validity of his equation was limited by the thin-film approximation, which particularly
impacts the mean curvature of the interface. This O(ε) approximation admits a collar
volume that never goes through a maximum so that the collar is always stable and
need not form a lens. Gauglitz & Radke (1988) extended Hammond’s analysis in an
ad hoc manner equivalent to a first-order Padé, rather than a Taylor, approximation
by keeping the full nonlinear circumferential curvature in the capillary but linearizing
everything else in the normal stress balance at the fluid–fluid interface. Their analysis
can predict the transition from collars to lenses, whereas Hammond’s thin-film analysis
might be able to predict this transition only at a higher order in ε approximation.
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In the presence of a base flow and very strong surface tension, Frenkel et al. (1987)
found that the Kuramoto–Sivashinky (KS) equation governs the weakly nonlinear
evolution of fluids with matched viscosities and densities. In their case, only capillar-
ity destabilizes and the dynamics of the core slave those of the film. The nonlinear
coupling to the base flow through the kinematic condition can steepen unstable in-
terfacial long waves. This gives rise to shorter length scales which become stabilized
by the longitudinal component (the fourth derivative of the interfacial deflection)
of the interfacial tension force. The KS equation has arisen in a variety of appli-
cations and exhibits complex dynamic behaviours depending on the period length.
Numerical solutions on a periodic domain have exhibited non-trivial steady states
(Chang 1987), travelling waves (Hooper & Grimshaw 1985), and spatial and temporal
chaotic motions (Sivashinky & Michelson 1980; Hyman & Nicolaenko 1986; Hyman,
Nicolaenko & Zaleski 1986). The most important feature of these investigations is
that KS seems to yield smooth and bounded solutions.

Papageorgiou et al. (1990) systematically developed a weakly nonlinear analysis
of CAF film flows for generally different viscosities and densities and for surface
tensions where the core dynamics are integrally coupled to the interfacial evolution.
They derived an amplitude equation to describe the interfacial dynamics which turns
out to be a KS equation modified by the inclusion of additional terms containing
integral kernels involving core quantities. In the case of slow and moderate flows, this
equation has non-local terms that reflect the coupling due to viscosity stratification of
the dynamics of the core to the interfacial evolution. These core-coupling terms also
give rise to additional dispersive and dissipative effects. They can lead to either chaotic
interfacial motions for weak dispersion, or more typically to nonlinear travelling
waves having more than one length scale for strong dispersion. These additional
terms demonstrate the regularizing effect of dispersion. This complements and is
consistent with the model results obtained by Kawahara (1983) and Kawahara &
Toh (1988) who added a simple third derivative dispersion term to the KS equation
and found regularization.

The point here is that, apparently, the KS-like systems can saturate the linearly
unstable waves in the weakly nonlinear regime. Kerchman (1995) allows the interfacial
disturbances to grow to sizes comparable to the film thickness, but instead requires
negligible interfacial shear, to examine strongly nonlinear interfacial dynamics of a
CAF. His analysis includes the weakly nonlinear analysis as special case. KS-type
saturation of the instability occurs for sufficiently small ε2J/Re1 (where Re1/J =
µ1W0/γ, µ1 being the core viscosity, W0 the centreline base flow velocity and γ
the interfacial tension, can be regarded as the capillary number based on the core
fluid). When ε2J/Re1 is sufficiently large, though, the core–annular arrangement may
collapse because the interface can strongly bulge into the core as a result of strong
capillary forces acting in the neighbourhood of an interfacial trough. As such, the
interfacial stability of a PCAF in a circular tube is fairly well understood.

As noted, in real core–annular flow systems such as occur in secondary oil recov-
ery, two fluids flow through uneven channels in the porous rock, and thus do not
posses an ideal geometry as do flows in a perfectly cylindrical tube. Similarly, the
extensive branching of the bronchiole system represents a system with a frequently
changing cross-section. It is thus conceivable that pore corrugations may play a role
in determining the stability of the system that is at least as important as the effects
already considered. However, there are good reasons why we might neglect them
in the first analysis. Let us consider briefly how pore corrugations complicate the
problem. First, such non-ideality will cause the base state to be significantly changed.
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Even the axisymmetric base flow pattern in a tube of varying cross-section will be two
dimensional, rather than just a purely axial velocity as a function of only the radial
position. This deviation from parallel flow can interact strongly with the disturbance
introduced in the stability analysis. For instance, consider the flow of a single fluid
in a tube of sinusoidally varying cross-section, even for small Reynolds number Re.
Inertial effects can be significant when the axial variation of the tube radius dR/dz
is as rapid as O(1/Re). Moreover, it is unlikely that we would be able to solve for
the base state exactly in closed form. Cylindrical tube theory clearly does not include
these effects. To access them, it is necessary to extend the scope of this theory to
include the varying geometry.

There have been several studies of base flows without an accompanying stability
analysis. Wang (1981) considered a film flowing slowly down a wavy inclined plate,
where the striations are parallel to the overall flow. He applied a perturbation
method with respect to the small amplitude of the corrugation. He found that for
a fixed mean film depth, the flow transverse to the striations is decreased relative
to that of a smooth plate while the flow along the striations is increased. Dassori,
Deiber & Cassano (1984) analysed a two-fluid system in a symmetric sinusoidally
varying two-dimensional channel. They focused only on the case of an outer fluid
(e.g. a gas) with very low density and viscosity ratios relative to the core fluid.
They found that the fluid interface exhibited a wavy shape, characterized by an
amplitude and a phase shift, relative to the channel, which are functions of surface
tension, density and viscosity ratios, flow rate, and the wavenumber of the wall.
Recently, Kang & Chen (1995) extended Wang’s analysis to the case with two
fluid–fluid interfaces in a planar system and a similar picture resulted. In cases of
large variation due to corrugation, perturbation techniques as above are no longer
applied. Pozrikidis (1988) extends Wang’s problem to large corrugations and solves
the two-dimensional creeping flow numerically on a periodic domain by using the
boundary-integral method. He shows that Wang’s asymptotic analysis overestimates
the effect of the wall’s waviness on the deflection of the interface, particularly at high
flow rates.

However, linear or nonlinear stability issues associated with flows in the corrugated
configuration, especially interfacial problems, have only been explored in a preliminary
manner. In the case of no flow, Gauglitz & Radke (1990) employed their previous
analysis (1988) to examine how constrictions affect foam formation in gas–liquid
displacements for the case where the radius varies slowly in the axial direction. They
showed that the time required to snap a collar off strongly depends on the neck
radius of the constriction and that the length of the constriction is not crucial to the
instability. A similar conclusion was also drawn by Ransokoff, Gauglitz & Radke
(1987) and Ratulowski & Chang (1989), who analysed the case where constrictions
have various cross-sections.

Tougou (1978) investigated the linear and weakly nonlinear stability of a viscous
film flowing down an inclined uneven wall in the presence of surface tension. In the
leading order of a shallow thickness parameter ε, defined here as the ratio of the
mean film thickness to the wavelength of the wall, the linear stability of the base
flow is identical to that for the plane wall case. His weakly nonlinear analysis derived
a KS-type equation incorporating the non-uniformity of the wall and showed that
the long-time interfacial evolution for an asymptotically long-wave wall is no longer
spatially periodic owing to the non-parallel base flow.

In WR (see also Wei & Rumschitzki 2000), we have developed an analysis that
uses asymptotic methods and Floquet–Bloch theory to analytically examine the lin-
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ear stability of a CAF in a corrugated tube. We develop steady base flows in an
asymptotic sense in powers of the small parameters ε and σ, the latter characterizing
the strength of the corrugation relative to the mean annulus thickness. We then de-
rive the corresponding linear stability to the leading order in both small parameters.
(All discussions below of this problem’s base flow and linear stability results impli-
citly refer to WR.) This procedure yields a linear interfacial evolution equation with
non-constant coefficients. Floquet–Bloch theory leads to the eigenvalue spectra that
depend on the wall’s wavenumber k and these spectra exhibit periodicity in α-space,
where α is the wavenumber of the initial disturbance. Direct numerical solutions of
the partial differential equation that governs the interfacial evolution for a variety of
initial conditions are performed and compare very well with the eigenvalue spectra.
The results reveal that the wavelength of the initial interfacial disturbance is modified
owing to interactions with the wall’s corrugation. As a result, in contrast to the
case of a CAF in straight tube, an initial disturbances whose wavelength is shorter
than the circumference of the undisturbed fluid–fluid interface can also lead to an
instability owing to the unstable higher wall corrugation harmonics excited by the
initial disturbance.

This discussion suggests two opposing trends in the weakly nonlinear regime of a
core–annular flow in a tube of varying cross-section. On the one hand, coupling of an
initially short wavelength disturbance to the wall’s corrugation excites unstable long
wavelength wall harmonics of the initial disturbance. On the other hand, the nonlin-
earity in KS and related equations steepen growing long waves, thereby shortening
their effective wavelength and stabilizing them via the fourth derivative capillary
term. Our aim in this paper is to systematically extend our previous analysis into the
weakly nonlinear regime in order to examine the interaction of these two trends. In
particular, can the nonlinearity saturate all of the unstable harmonics generated by
the corrugation and will the resulting dynamics be chaotic or regular?

3. Mathematical formulation
3.1. Governing equations and boundary conditions

Two immiscible, viscous, incompressible fluids are flowing axisymmetrically in a
core–annular arrangement in a horizontal tube of radius R2(z) that varies in the axial
direction with slight corrugation (see figure 1). The interface is given by r = S(z, t).
The core region, defined by 0 6 r 6 S(z, t), is occupied by fluid 1 and the annulus,
S(z, t) 6 r 6 R2(z), is filled by fluid 2. Since the flow fields are assumed to be
axisymmetric, they only have velocity components (u, 0, w) in terms of the cylindrical
polar coordinates (r, θ, z). We non-dimensionalize the velocity, pressure, length scales
and time with the characteristic quantities W0, ρW

2
0 , R0 and R0/W0, respectively.

R0 is the mean core radius; W0 is the axial velocity at the central line r = 0 (note:
application to the respiratory problem having a gas core requires a rescaling with γ/µ
where γ is the surface tension, rather than the centreline velocity) in the uncorrugated
base flow with inner and outer radii R0 and the mean value of R2, respectively; and
ρ is the density of the fluids taken for now to be equal (since the effects of density
differences tend to be of higher order than viscosity differences or surface tension
(Georgiou et al. 1992)).

The non-dimensional governing equations in each phase are given by

wt + uwr + wwz = −pz +
1

Rei
∇2w, (3.1a)
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Figure 1. System diagram. Wall is R2(z) = 1 + ε(1 + σφ(z)); interface is S(z, t).

ut + uur + wuz = −pr +
1

Rei

(
∇2u− u

r2

)
, (3.1b)

1

r
(ru)r + wz = 0, (3.1c)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
,

i = 1, 2 denotes the core and the annulus, respectively, subscripts denote partial
derivatives and the Reynolds number is given by Rei = ρW0R0/µi. We use Re1

for the core as the reference Reynolds number. The annulus Reynolds number is
Re2 = Re1/m, in which m = µ2/µ1 is the viscosity ratio of the annulus to the core.

Define the jump notation [•] = (•)1 − (•)2. The following boundary conditions are
used. Velocities vanish on the wall R2(z):

w = 0, u = 0 at r = R2(z). (3.2a)

The velocities are continuous across the interface,

[w] = 0, [u] = 0, at r = S(z, t). (3.2b)

The tangential stress and normal stress balances apply at the fluid–fluid interface:[
1

Re
(uz + wr)(1− S2

z ) +
2

Re
urSz − 2

Re
wzSz

]
= 0 at r = S(z, t), (3.2c)

−
[
p− 2

Re
ur −

(
−p+

2

Re
wz

)
Sz +

2

Re
(uz + wr)Sz

]
=

J

Re2
1

(
Szz − 1

S
(1 + S2

z )

)
(1 + S2

z )−3/2 at r = S(z, t), (3.2d)

where J = γR0ρ/µ
2
1 is the surface tension parameter used by Chandrasekhar (1968)



156 H.-H. Wei and D. S. Rumschitzki

and where γ is the interfacial tension. The kinematic condition, which determines the
shapes of the interface, is

u = St + wSz at r = S(z, t), (3.2e)

Finally, the flow field of the core must be bounded at the central line, i.e.

w bounded and u = 0 as r → 0. (3.2f)

3.2. Scalings and asymptotic formulation

In our study of the linear stability of the system, we assumed an asymptotically small
wall corrugation R2(z) = 1 + ε(1 +σφ(z)), where σ is a small parameter characterizing
the size of the corrugation and φ(z) is an order one shape function. We found that
the scaling relation J/Re1 ∼ 1/ε2 yields a non-trivial corrugated base flow in the CAF
configuration and we calculated it to leading order in ε and σ. The solution for the
flow pattern is determined by the interfacial deflection η(z) (the base state’s interfacial
position Sb(z) = 1 + σεη(z) + · · ·), which the following equation for the interfacial
shape governs:

J0

3λ
(ηzzz + ηz) + 2η = 2φ, (3.3)

where J = J0/ε and Re1 = λε, λ and J0 are both order one constants. Note that
the solution to η is independent of viscosity stratification (m) since the core does not
contribute to leading order at these scales and J0/6λ is just the ratio of the capillary
to the shear forces (Re1/J = Ca, the capillary number). Introduce a stretched film
variable y := 1 − (r − 1)/ε. The film solution (double and single overbars denote
PCAF and the corrugation’s correction to the base flow, respectively) is

wb = ¯̄w + w̄ =
2ε

m
y + εσ

(
J0

mλ
(ηzzz + ηz)(

1
2
y2 − y) +

2

m
φ

)
+ O(ε2, ε2σ, σ2ε), (3.4a)

ub = ū = ε2σ

(
J0

mλ
(ηzzzz + ηzz)(

1
6
y3 − 1

2
y2) +

2

m
φzy

)
+ O(ε3σ, σ2ε2), (3.4b)

pb = ¯̄p+ p̄ = ¯̄p+
σ

ε2
(η + ηzz) + O

(
σ

ε
,
σ2

ε

)
. (3.4c)

We do not quote the base flow of the core since it merely slaves the film (up
to O(1) Re1) and does not contribute to the leading-order stability of the system.
Also, WR extends the previous analysis to both J0/λ� 1 and ε� J0/λ� 1 regimes
without significant change to the formulation.

With the asymptotic, steady base flows, we now begin the corresponding asymptotic
weakly nonlinear stability analysis. Instead of an infinitesimal disturbance for the
linear analysis, we introduce a finite axisymmetric disturbance of size δ at the steady
interface in such a way that S(z, t) = Sb(z) + δξ(z, t), where Sb(z) is the interface of
the corrugated base state, ξ(z, t) is an unknown order one function responsible for
the disturbance, and δ is small compared with the undisturbed core radius and film
thickness, i.e. δ � |Sb|, ε. Clearly, δ → 0 recovers the base flows, and O(δ) leads to the
linear stability problem. In general, the fully nonlinear analysis allows δ ∼ ε, which
means that the size of the disturbance is comparable to the film thickness. We scale
δ = δ(σ, ε)� ε to constrain disturbances within the weakly nonlinear regime.

We first determine the scalings of the disturbed quantities before formulating the
perturbation scheme. We follow the scaling procedure used in the linear analysis,
which is similar to Hammond (1983), Papageorgiou et al. (1990) and Georgiou et al.
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(1992). We use ε, the ratio of the mean undisturbed film thickness to the mean core
radius as the small parameter. By substituting for r in terms of y we can make the thin
film explicit, separate the film’s radial scale from its axial scale and from both scales
in the core. As such, radial derivatives in the film are large, i.e. ∂/∂r = −(1/ε)(∂/∂y).
Let (w′, u′, p′) and (W ′, U ′, P ′) represent the disturbed quantities for the film and the
core, respectively. We can estimate the scalings of these quantities in the case of
Re1 = λε and J = J0/ε by using the scaling relation for the base flows together with
the governing equations and boundary conditions. From the normal stress condition,
p′ ∼ δ/ε3. Relating w′ with p′ by use of the lubrication equations in the film brings
out w′ ∼ δ, and u′ ∼ εδ follows by continuity. For the core, which lacks separable
length scales, both W ′ and U ′ are of order δ, which is a consequence of the continuity
of velocity, and P ′ is of order δ/ε from the equations of motion.

We now seek a consistent order for δ. Since the annular region is thin, the
lubrication equations govern the flow there. The nonlinear inertia of the film is of
higher order, and thus the nonlinear terms in the stability analysis derive from the
kinematic condition. This condition couples the derivative of the disturbed interface
position either to the base flow velocity at the disturbed interfacial position, or directly
to the disturbed flows. Thus, the kinematic condition should provide the scaling of δ
in this weakly nonlinear analysis. We begin with the expansions for the film,

w = wb + δw′, u = ub + εδu′, p = pb +
δ

ε
p′, (3.5a–c)

and for the core,

W = Wb + δW ′, U = Ub + δU ′, P = Pb +
δ

ε
P ′, (3.5d–f )

where the quantities with subscript b denote the base flow quantities, which have
non-trivial σ and ε expansions. Let (wb, ub) = (εw̄0 + · · · , σε2ū0 + · · ·) for the film base
flow. Then the kinematic condition, evaluated at the base interface Sb(z) = 1 + σεη(z)
(and not at r = 1), expanded with respect to δ, gives

δ(−σεū0yξ + εu′)− δ2u′yξ + O(σδ2) = δξt + εδw̄0ξz + δSbz(−w̄0yξ + w′)

+δ2ξz(−w̄0yξ + w′) + O(δ3). (3.6)

Note that Sbz ∼ σε here. We introduce the long time scale τ = εt to capture the
dynamics of the leading order of (3.6) at O(εδ). Since the weakly nonlinear analysis
requires δ/ε� 1, δ/ε should be scaled using the system’s small parameters ε and σ.
Different scaling choices for the parameters may lead to different dynamic characters.
We shall discuss this in the next section.

Below we plug the appropriate asymptotic expansions into the governing equations
and the boundary conditions, extract the corrugated base flow contribution and derive
an equation that governs the stability of the system up to O(δ2) within the weakly
nonlinear regime. In order to allow a larger scope to this scaling analysis and to
provide the context for a general discussion later on, it is more convenient to keep δ
unscaled in (3.5) during the formulation.

A full knowledge of the base state to all orders in σ and ε provides an exact solution
of the nonlinear, steady-state Navier–Stokes equations subject to the conditions of
the corrugated boundary. In WR, we have only solved the base flow asymptotically
and have thus far only determined its leading-order contributions explicitly. However,
when substituting (3.5) into (3.1) and (3.2), we shall use the fact that the full steady-
state solution satisfies the steady-state equations and boundary conditions exactly and
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its truncated solutions satisfy these equations/conditions exactly up to the order of
truncation. This will allow us to retain only terms of O(δ) and lower. The coefficients
will only contain explicit contributions from the leading order of the corrugated
base flow. As such, this step can be achieved without knowing any details about the
higher-order solutions of the base states.

In order for the corrugation terms to be of lower order than the first ε-order
correction to the leading order (see the tangential stress condition below), we assume
σ � ε, which for these scales, also decouples the core. From this point, we drop
the primes for the disturbed quantities. The leading order of the film’s governing
equations become

0 = −pz +
m

λ
wyy, 0 = py, −uy + wz = 0. (3.7a–c)

For the core, we have,

0 = −Pz +
1

λ
∇2W, 0 = −Pr +

1

λ

(
∇2U − U

r2

)
,

1

r
(rU)r +Wz = 0, (3.7d–f )

subject to the boundary conditions.

On the wall,

y = −σφ, w = 0, u = 0. (3.8a)

At the interface r = S(z, t), we expand around the base state interface Sb(z). After
eliminating the base flow contributions, the leading terms in ε and δ for each boundary
condition (other than the kinematic condition (3.6)) are:

Continuity of velocity to O(δ)

−ξ
(

2

m
+ σw̄(1)

y

)
y=1

+ w(y = 1− ση) = −2ξ +W (r = 1) + O(σε), U(r = 1) = O(ε).

(3.8b)
The tangential and normal stress balances to leading order O(δ/ε) are dominated by
film variables:

−wy(y = 1− ση) + σξw̄(1)
yy (y = 1) = O(ε), (3.8c)

at y = 1− ση, p =
J0

λ2
(ξzz + ξ). (3.8d)

In (3.8c), w̄(1) is the coefficient of the O(σε) axial valocity in (3.3a) for the film’s base
flow. Note that the normal stress does not contain the base flow’s interface to leading
order. From (3.2d), we can separate the interfacial curvature κ into the contribution
of the base flow interface Sb

κb =

[
Sbzz − 1

Sb
(1 + S2

bz)

]
(1 + S 2

bz)
−3/2

plus the disturbed curvature

κ′ = δ

{
ξzz +

ξ

S2
b

(1 + S2
bz)− 2

Sb
Sbzξz − ξzSbz

[
Sbzz − 1

Sb
(1 + S2

bz)

]
(1 + S 2

bz)
−1

}
×(1 + S 2

bz)
−3/2 + O(δ2).

The interaction terms, such as δSbzξz ∼ δσε, in κ′ that derive from S2
z are of higher

order than δ(ξzz + ξ).
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Solving for w and u from (3.7a–c) gives

w =
λ

2m
pzy

2 + Cy + D, (3.9a)

u =
λ

6m
pzzy

3 + 1
2
Czy

2 + Dzy + E, (3.9b)

where C = −(λ/m)pz(1 − ση) + O(σ2), D = −(λ/m)pzσφ + O(σ2) and E = O(σ2).
Substitute (3.9) into (3.6) and use (3.8d) to derive the weakly nonlinear interface
evolution inclusive of corrugation:

ξτ +
2

m
ξz +

J0

3mλ
(ξzz + ξ)zz + σ

[
(η − φ)

(
4

m
ξ − J0

mλ
(ξzz + ξ)z

)]
z

+

(
δ

ε

)(
− 2

m
ξξz − J0

mλ
(ξ(ξzzz + ξz))z

)
+ O(ε, σ2, δσε−1) = 0. (3.10)

At the leading order in δ, this equation recovers the linear analysis, which consists
of the straight tube contribution and the O(σ) term in square brackets due to the
corrugation. The dependence on the corrugation is reflected by the variation of the
base flow film thickness (η − φ) with z. The next order in δ (here O(δ/ε)) gives
the leading nonlinear terms. The first nonlinear term comes from the shear flow and
is the usual (e.g. Papageorgiou et al. 1990) KS term. The second nonlinear term arises
from the capillarity. Note that we remain in the laboratory frame (that is, we retain
the convective term (2/m)ξz) instead of switching to a moving frame because of the
presence of the corrugation. As we shall see in the next section, special forms of (3.10)
apply to different scalings of J0/λ, and thus of δ.

3.3. Numerical methods

To examine the impact of corrugation on the stability of the system, it is necessary
to compare the numerical simulations for σ = 0 with those for σ 6= 0. Since the
numerical solution must be calculated on a periodic domain, it is useful to employ
spectral methods. Consider a periodic domain with period 2π/β. We construct the
solution to ξ as

ξ(z, τ) = a0(τ) +

N∑
n=1

(an(τ) cos(βnz) + bn(τ) sin(βnz)), (3.11)

subject to a cosine wave initial condition ξ(z, τ = 0) = A cos(αz) of the initial
wavenumber α. At this juncture, in particular for comparing σ = 0 with σ 6= 0, we do
not consider other forms of initial conditions, even though they may, in principle, lead
to different behaviour. We choose the amplitude A of the initial interfacial profile
relatively small (e.g. A = 0.1) so that its development appears to start within the
linear regime. For σ = 0, the linear dispersion equation for mode n has a growth rate
(J0/3mλ)(βn)

2(1−(βn)2), which suggests that the modes with βn > 1 should decay with
time and those with βn < 1 should grow as linearly unstable waves. For σ 6= 0, though,
the wall wavelength 2π/k enters. The base flow term η − φ = h1 cos(kz) + h2 sin(kz),
where h1 and h2 are known functions of k and J0/λ (from WR). Although k can be an
arbitrary real positive number independent of the choice of the initial wavenumber α,
we choose it to have a rational ratio with α so as to guarantee that there is a period
over which both the initial disturbance and the wall are periodic. We can choose β
to be the greatest common divisor of k and α, and let (k, α) = (nk, nα)β where nk and
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nα are fixed integers. We also choose α belonging to the linearly unstable branch.
With this choice, inserting (3.11) into (3.10) results in a system of ordinary differential
equations for the amplitudes an(τ) and bn(τ). We employ a fourth-order Runge–Kutta
method to solve these temporal equations and use time steps from 2× 10−4 to 10−3,
depending on the parameters. (For equation (4.5), which becomes stiff, we use Gear’s
method, with an initial step size of 10−15 and allow the method to vary the step size.)
We choose the number N of modes retained to be large enough to resolve the spatial
variation so that high harmonic modes decay. Typically, N = 16 is chosen for most
simulations. We determine an(τ) and bn(τ) to within 1% absolute error tolerance. We
check spatial convergence by doubling N to verify that the spatial evolution does not
change significantly.

4. Results and discussion
We now examine the numerical solutions for the weakly nonlinear interfacial

evolution as given by (3.10). We turn to the applications mentioned above to motivate
the parameter regimes for the numerics. In secondary oil recovery, Re is much smaller
than one and typically O(10−3), whereas J is order one or larger and typically O(103)
(Hammond 1983). According to Bretherton’s analysis, the film thickness surrounding
a slug of one fluid advancing into another fluid in a tube scales as Ca2/3, which
predicts ε ∼ 10−2 − 10−4 depending on the prefactor. Thus J0/λ = O(1), as well as
slightly larger or smaller, are regimes of interest. In lung respiratory distress, recall
than a thin liquid layer coats the cylindrical bronchioles. In distress, the naturally
occurring surfactant DPPC is absent or inactive. It is thus unable to slow the time
scale of the instabilities of the system that lead, in the terminal bronchioles, to either
the film forming a lens and/or the elastic bronchiole collapsing, both of which block
air flow (Otis et al. 1993). J for this problem is O(103), Re ∼ 0.2 − 2 for Re based
on film properties and ε ∼ 0.02 (Johnson et al. 1991). Thus, the lung problem has
J0/λ ∼ 1−1/ε. Of interest is whether growth saturates in the weakly nonlinear regime
(and if so, its shape) or continues beyond, suggesting possible film rupture.

4.1. Strong interfacial tension case J0/λ ∼ O(1)

Let us first consider the strong interfacial tension case J0/λ ∼ O(1). In the absence of
corrugation at σ = 0, (3.10) becomes

ξτ +
2

m
ξz +

J0

3mλ
(ξzz + ξ)zz −

(
δ

ε

)(
2

m
ξξz +

J0

mλ
(ξ(ξzzz + ξz))z

)
= 0. (4.1)

This equation is equivalent to those given by Aul (1989), Kerchman & Frenkel (1994),
Kalliadasis & Chang (1994) and Kerchman (1995) in the small-amplitude disturbance
limit. Note that there are weakly nonlinear terms deriving from both shear and
capillarity. Unlike the KS equation, which only has a nonlinearity due to shear that
can saturate linearly unstable waves, the presence of the capillary nonlinearity might,
depending on the relative strength of the shear and capillarity, even amplify the linear
instability. It might thus, in principle, cause growth beyond the weakly nonlinear
regime. That is, even though the solutions to this equation may predict a long-term
evolution whose interfacial disturbances may remain bounded, they may become
comparable to the mean film thickness, and so equation (4.1) may not be uniformly
valid in time (see Kalliadasis & Chang 1994; Kerchman 1995). In the analysis of
Kerchman (1995), for relatively small order-one values of J0/λ, the solutions show
quasi-periodic or chaotic features similar to KS and thus the instability saturates
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in the weakly nonlinear regime. For intermediate ranges of J0/λ (about 0.7 in our
notation), more film fluid can drain into the core. The film generally becomes more
flattened but has larger bulges into the core. However, for even larger J0/λ (about
0.9), strong core-bulging processes cause large interfacial amplitudes. Even though this
solution remains numerically bounded, it is no longer weakly nonlinear and suggests
that the core may snap off and break the CAF topology. These results qualitatively
agree with Aul & Olbricht’s (1990) experiments.

Even though Kerchman’s work is based on a strongly nonlinear analysis, the
weakly nonlinear equation (4.1) should show most of its qualitative features. When
σ 6= 0, whether the corrugation or the nonlinearity dominates or whether both are
comparable, depends on J0/λ and the size δ of the interfacial perturbation. To bring
the corrugation into the leading orders in the weakly nonlinear regime, we chose
δ ∼ σε so that the nonlinearity and the corrugation compete at the same order of
σ in (3.10). For numerical computation, we thus choose σ = 0.2 and δ/ε = 0.15
throughout this subsection. Note that even though δ is scaled by the corrugation, we
numerically retain its size δ = 0.15ε when we compare solutions with and without
(σ = 0) corrugation. That is, we first numerically confirm the features of (4.1) for σ = 0,
δ = 0.15ε and then directly compare them with the case of (3.10) with corrugation.
To do so, we remain in the laboratory frame throughout these simulations, even for
σ = 0, rather than going to a moving frame, because it is more convenient for the
corrugation case.

For σ = 0, as suggested by Kerchman (1995), we choose J0/λ = 0.7 and m = 1
to ensure that the resulting long-time interfacial evolution is bounded in the weakly
nonlinear regime. We impose an initial disturbance with small amplitude and a
single unstable wavenumber of α = 0.6. Figure 2(a) shows a series of snapshots
of the spatial–temporal interfacial evolution. At the early stages of the evolution,
the interface grows according to the linear theory. When the interfacial amplitude
becomes sufficiently large (at about τ ∼ 40), nonlinear effects become important and
the interface then undergoes a local curvature change owing to nonlinear coupling.
As in Kerchman (1995), Papageorgiou et al. (1990), the upper part of the interface
flattens and forms two humps and the lower part appears sharper with a high
curvature around the trough. However, unlike the symmetric humps formed in the
no-flow case by Hammond (1983), these two humps are asymmetric because of
the base state shear flow at the leading order in ε. The long-term development is
shown in figure 2(b). Steady waves are established at about τ ≈ 100, and travel
with a speed c ≈ 2 (owing to the retention of the linear convective term (2/m)ξz)
in space. Note that even though the waves appear to be travelling backwards in the
z-direction owing to the time between traces, they actually travel forwards, i.e. to
the right. During the given time interval ∆τ = 20, the waves travel over a distance
c∆τ ≈ 40. The resulting waves move a distance slightly less than four times the
dominant wavelength 2π/α (4 × 2π/0.6 ≈ 41.9). Therefore, the waves look as if they
are travelling backwards.

Corrugation has the potential to complicate these pictures for σ 6= 0. Recall in
the linear theory that the corrugation can respond to a short-wave disturbance by
exciting the growth of long-wave wall harmonics of the initial disturbance at times
of O(ln(1/σ)). It may be interesting to see whether the nonlinearity accelerates or
decelerates this corrugation-modified long-wave instability. As such, we select the
following cases for a preliminary examination of the impact of corrugation on the
solution of equation (3.10): (α, k) = (0.6, 1.8), (1.2, 1.8), and (1.8, 2.4). According to
the linear theory, in the first case, the primary interfacial action is growth (0.6 < 1)
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Figure 2. The weakly nonlinear interfacial evolution for the corrugation-free case for (a) short and
(b) long times. Initial disturbance α = 0.6 is linearly unstable. Nonlinear waves travel to the right
with slightly less than one period per time interval between traces, thereby appearing to travel to
the left. J0/λ = 0.7, σ = 0, δ = 0.15ε, interval between traces ∆τ = 10.

with the initial unstable wavelength later augmented by the higher harmonics of
the wall corrugation. The latter two cases, however, will begin with a decaying initial
disturbance that only at later times excites unstable harmonics whose resulting linearly
unstable wavelengths coincide with those of the previous case. That is, all three of
these cases have a dominant unstable wavenumber 0.6 in the linear regimes. Figures
3–5 show the spatial–temporal evolutions of these three cases. Before examining these
figures in detail, we note that they all suggest that initial disturbances saturate.

At first glance, these long-term evolutions generally show the same dominant
wavelength as and give similar interfacial shapes and travelling waves to the σ = 0
case. However, there are some different details in the local interfacial behaviour. In
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Figure 3. The weakly nonlinear interfacial evolution of the corrugation-free case for a linearly
unstable initial disturbance α = 0.6 and wall wavenumber k = 1.8. J0/λ = 0.7, σ = 0.2, δ = 0.15ε,
interval between traces ∆τ = 20.

contrast to σ = 0, temporally oscillatory motions are present in the quasi-steady
travelling waves as they pass the crests and troughs of the wall. In figure 3 with
(α, k) = (0.6, 1.8), as in figure 2(b), the interface first amplifies the initial long-
wave mode. However, it then develops quasi-steady travelling waves with temporal
oscillations visible every two frames at 20 time unit intervals.

Upon imposition of a short wavelength disturbance such that |α − k| < 1, cf.
figures 4 and 5, the interface undergoes a transition from the decaying mode with
an initial short-wavelength disturbance to a growing mode with a long wavelength
in the linearly unstable regime. Thus, the time required to enter the nonlinear regime
is, as expected, longer than in figure 3. For (α, k) = (1.2, 1.8) as shown in figure 4,
the evolution reaches a quasi-steady state at τ ≈ 200, but then shows almost identical
local oscillatory behaviour to figure 3. In the case of (α, k) = (1.8, 2.4), the transient
state (not shown) takes even longer to develop because of the more rapid decay of the
initial mode. The long-term interfacial motions are similar to those in figure 4 (note
the similarity in shape between waves at τ = 300 in figures 3 and 4, and τ = 400
in figure 5), but the quasi-steady state behaviour in figure 5 is rather different from
those in the previous cases. There are four frames per cycle of oscillatory motions and
they have stronger modulations than do the earlier cases. The different numbers of
traces per cycle and split peaks in every fourth trace appear to coincide with the more
frequent occurrence of the wall crests and troughs for the large wall wavenumber k.

Figure 6 shows the case of (α, k) = (0.3, 2.4) whose unstable initial wave is 0.3, but
whose wall wavenumber is the same as in figure 5. Here, the waves appear more
intricate. As shown in figure 6(b), they appear to require eight frames of an oscillatory
cycle when τ = 500 ∼ 660. This intricacy is not surprising since the linearly unstable
wave present is double the size of the previous cases and thus sees more of the
wall’s corrugation per disturbance period. Note that all of these corrugation cases
have a similar travelling wave speed, c ≈ 2, with a small corrugation correction for
each case. The longer the dominant wavelength, the longer the time a wave travels
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Figure 4. The weakly nonlinear interfacial evolution with corrugation-free case for a linearly stable
initial disturbance α = 1.2 and wall wavenumber k = 1.8. Linear coupling to the walls’ corrugated
wavelength excites unstable waves |α− k| for times of order ln(1/σ). J0/λ = 0.7, σ = 0.2, δ = 0.15ε,
∆τ = 20.
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Figure 5. Long time weakly nonlinear interfacial evolution with corrugation-free case for a
linearly stable initial disturbance α = 1.8 and wall wavenumber k = 2.4. Linear coupling
to the walls’ corrugated wavelength excites unstable waves |α− k| for times of order ln(1/σ).
J0/λ = 0.7, σ = 0.2, δ = 0.15ε, interval between traces ∆τ = 20.

over a distance equal to its wavelength. On the other hand, the shorter the wall
wavelength, the more frequently the interface with a longer wavelength encounters
the wall’s crests and troughs; therefore the time periodicity becomes longer. This time
periodicity is roughly proportional to the ratio k/αd of the wall wavenumber to the
dominant wavenumber αd. For the same wall waviness k = 2.4 as in figures 5 and 6,
the dominant wavelength in figure 6 is twice that in figure 5. The resulting oscillation
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Figure 6. Same as figure 5, but for a linearly unstable initial perturbation α = 1.8 at
(a) short and (b) longer times.

period in figure 6 is double that in figure 5. Similarly, for the same dominant wave
as in figures 4 (k = 1.8) and 5 but for a different k, we estimate the time period in
figure 5 as 1.5 (or 2) times that in figure 4.

In summary, for J0/λ = 0.7, these results show that the nonlinear saturation
overcomes the continual excitation of new unstable long waves by the corrugation and
leads to steady or quasi-steady travelling waves. That is, the film/core arrangement
should persist.

If we increase the scaled inverse capillary number as J0/λ � 1, the capillary
force overwhelms the effect of the base flow, and we might expect the system to
approach Hammond’s limit. In this limit, the interface in the leading-order base state
is cylindrical, i.e. η = 0 + O(J0/λ)

−1. Assuming J0/λ � σ−1 and restricting the time
scale to O(J0/λ)

−1, we find that the base flow drops out of the leading-order weakly
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nonlinear equation:

ξτ +
J0

mλ
{ 1

3
(ξzz + ξ)zz + σ[φ(ξzzz + ξz)]z − δ

ε
[ξ(ξzzz + ξz)]z}+ O(1) = 0. (4.2a)

The presence of the corrugation in the linear theory can cause a resonance that
amplifies the instability to O(σ) from O(σ2) for some ranges of wavelengths of the
disturbance and the wall (WR, § 3). For convenience, let τ → (mλ/J0)τ. The leading
order of (3.2a) becomes

ξτ + 1
3
(ξzz + ξ)zz + σ[φ(ξzzz + ξz)]z −

(
δ

ε

)
[ξ(ξzzz + ξz)]z = 0. (4.2b)

At σ = 0, this equation reduces to the weakly nonlinear version of Hammond’s
equation, that is, with a linearized version of the cubic nonlinearity. Consider an
interface with a single long wavelength that is linearly unstable. For σ = 0, the
capillary term can be rearranged as(

1− 3
δ

ε
ξ

)
(ξzz + ξzzzz)− 3

(
δ

ε

)
ξz(ξz + ξzzz).

The first of these terms involves

h3 =

(
1− δ

ε
ξ

)3

≈
(

1− 3
δ

ε
ξ

)
+ O

((
δ

ε

)2
)
,

the cube of the film thickness h. This term slightly amplifies the growth of the
interface’s trough (with ξ < 0) and slightly suppresses the growth at its crest (with
ξ > 0) in the weakly nonlinear regime relative to the linearly growing interface. This
leads to a flatter crest and steeper trough. The second term would come into play
should a small-amplitude, short-wave depression occur by fluctuation in the crest.
Except at the points in the depression where ξz = 0, the first and third derivatives are
of opposite signs, with the third derivative of larger magnitude. This would cause the
disturbance to grow until the first derivative was comparable to the third derivative
or until the local curvature corresponded to a wavelength of at least one. As a result
of both of these terms, the interface shape forms two shallow symmetric humps near
the wall and a deep trough protruding into the core.

The numerical solution of (4.2b) (with α = 0.7 and σ = 0) is shown in figure 7. The
rate of change of the solution slows down markedly at τ ≈ 90. The interface shape is
similar to the solution with Hammond’s retention of the full cubic factor, although
the evolutions in Hammond’s case do not reach a steady state, their growth in the
nonlinear regime is very slow. For the case with corrugation (σ 6= 0), we choose k = 1.4
so that the resonance in the linear theory occurs at the initial wavenumber α = 0.7
of the disturbance: Even (0.1 cos(αz)) and odd (0.1 sin(αz)) (there is no difference
for σ = 0) parities (relative to the wall) of the initial condition are also chosen for
comparison purposes, and the corresponding results are presented in figures 8(a) and
8(b), respectively. Note that the wall profiles drawn in figure 8 are not in true scale
and only indicate a relative phase between the interface and the wall. In general,
the evolution for σ 6= 0 is more amplified than that for σ = 0. For an even initial
interfacial profile, the interface appears to reach a steady state at τ ≈ 220. The humps
all appear more pronounced than those for σ = 0. On the other hand, the odd initial
disturbance leads to a more unstable evolution than the even case. ξ is order 10 at
τ = 100, which means the interfacial amplitude δξ ∼ 1.5ε, clearly beyond the weakly
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Figure 7. Weakly nonlinear interfacial evolution for the corrugation-free case in the limit where
surface tension forces predominate over shear forces, i.e. no flow. Initial disturbance α = 0.7 is
linearly unstable. ∆τ = 5. Interfacial growth appears to saturate by time 100.

nonlinear regime. When the two humps form at the crest for the odd initial condition,
their growth seems to accelerate with time rather than slowing down. Thus, this case
shows no sign of approaching a steady state. In a qualitative comparison with Gauglitz
& Radke (1990), the upper part of our odd initial interfacial profiles corresponds to
their ‘thick–thin’ case, which also showed a similar qualitative feature and a faster
growing evolution. Figure 8(c) chooses an initial condition (0.1/

√
2) (cos(αz) + sin(αz))

with both even and odd profiles together. The evolution also shows features similar
to the odd case in figure 8(b) and grows faster than the even case in figure 8(a).
It seems that the odd initial condition, where the interfacial peaks and valleys are
mostly in phase with those of the wall, triggers more instability. Note that we restrict
our attention to the above no-flow limit (4.2a) for time scales O(λ/J0) because the
system has already left the weakly nonlinear regime. For even longer time scales, the
weak base flow will certainly alter the in or out of phase character discussed. It may
continue to drive the film-drainage process even longer and form even larger lobes
into the core, as seen by Kalliadasis & Chang (1994) or Kerchman (1995).

4.2. Less strong interfacial tension case ε� J0/λ� 1

As shown by Sivashinsky & Michelson (1980) for the flow of a thin film on a vertical
wall and Frenkel et al. (1987) for a core–annular flow of fluids of matched densities
and viscosities without wall corrugation, an intermediately strong interfacial tension
ε� J0/λ� 1 can lead to the KS equation. The weakly nonlinear interfacial evolution
at σ = 0 is governed by

ξτ +
2

m
ξz +

J0

3mλ
(ξzz + ξ)zz −

(
δ

ε

)
2

m
ξξz = 0, (4.3)

which, upon switching to a travelling reference frame, is just KS, an equation whose
dynamics have been well studied (e.g. Hyman & Nicolaenko 1986; Smyrlis & Papa-
georgiou 1990; Papageorgiou & Smyrlis 1991). Without the capillary-derived nonlin-
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Figure 8 (a, b). For caption see facing page.

earity that causes film drainage into large troughs, the shear nonlinearity ξξz steepens
and thereby shortens the growing linearly unstable long waves and the longitudinal
component of capillarity saturates their growth. Extensive numerical investigations
on a periodic domain (Sivashinsky & Michelson 1980; Frisch, She & Thual 1986;
Hyman & Nicolaenko 1986; Smyrlis & Papageorgiou 1990; Papageorgiou & Smyrlis
1991) have shown that depending on the number of linear unstable waves per period,
the solution generally exhibits complex chaos (long periods), dynamics such as uni-
or multi-modal travelling waves, oscillations, or some combinations of these (Hyman
& Nicolaenko 1986). However, as demonstrated by Kawahara (1983), the addition
of a linear dispersion term (e.g. a third derivative term) to KS can regularize the
chaotic motions and form travelling waves. Similar conclusions for more complicated
dispersion forms arise from Papageorgiou et al. (1990) and Kerchman (1995).
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Figure 8. Interfacial evolution in the strong surface tension limit for the case with corrugation.
Initial condition (a) in phase (b), out of phase, or (c) mixed with wall at double its wavelength.
Wall shown not to scale. Corrugation amplifies interfacial evolution relative to the corrugation-free
case. In phase initial condition appears to lead to a steady interface; out of phase conditions seem
to grow beyond the weakly nonlinear regime. σ = 0.2, α = 0.2, δ = 0.15ε, (a) ∆τ = 20, or (b, c) 10.

In the presence of wall corrugation, the base interface follows the shape of the
wall (η − φ = −(J0/6λ)(φzzz + φz) + O(J0/λ)

2) to leading order. Thus, the film
thickness is uniform and the film flow is locally parallel to leading order in σ and
J0/λ. To derive a weakly nonlinear equation that has a leading-order corrugation
contribution, now of order σJ0/λ, we restrict our attention to a scaling σε � δ.
Under these conditions (see equation (3.10)), the capillary nonlinearity is of higher
order (O(δJ0/λε)) than the convective corrugation contribution (O(σJ0/λ)), as is the
capillary part of the corrugation (O(σ(J0/λ)

2)). Thus, we may choose δ to be either of
order εJ0/λ or εσJ0/λ. In the former (latter) case, the nonlinear term competes with
capillarity (corrugation). Let us examine the latter case more closely. For δ ∼ εσJ0/λ,
capillarity is the only leading-order term, and both the nonlinear and corrugation
terms contribute at the first correction. Such a nonlinear term competes with the
capillary instability only when the time scale τ ∼ O(σJ0/λ)

−1. However, by this time,
ξ has grown to be O(e1/σ)ξ(τ = 0), and thus causes the overall interfacial amplitude
δξ to be O(σεe1/σJ0/λ). This is beyond the size of δ presumed in (3.10). Therefore, we
choose δ ∼ εJ0/λ in the presence of corrugation and arrive at

ξτ+
2

m
ξz +

J0

3mλ
(ξzz + ξ)zz−

(
σJ0

λ

)
2

3m
[(φzzz + φz) ξ]z−

(
J0

λ

)
2

m
ξξz +O

(
εJ0

λ

)
= 0.

(4.4)
The corrugation term is now of higher order than the nonlinear term. Thus, at

leading order in J0/λ, the evolution is primarily determined by the KS mechanism
and, in the absence of other effects, we expect the linear instability to saturate. There
are a number of questions that arise from (4.4). At these scales, corrugation (σ 6= 0)
contributes a purely dispersive correction to the growth rate at O(σ(J0/λ)

2). In view
of Kawahara & Toh’s (1988) observation (also seen by Papageorgiou et al. 1990) that
a dispersive term can regularize otherwise chaotic motions, this observation holds out
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the possibility that corrugation may have a similar regularizing effect. On the other
hand, the linear theory showed that σ 6= 0 can allow even short-wavelength interfacial
pertubations α to excite growing long waves α ± nk (k is the wavenumber of the
wall), when −1 < α ± nk < 1 (n is an integer). Thus, the continual self-generation
of perturbations of various wavelengths may cause solutions on periodic domains of
a size that would lead to regular nonlinear travelling waves for a unimodal initial
condition as used (e.g. by Hyman & Nicolaenko 1986; Smyrlis & Papageorgiou 1990;
Papageorgiou & Smyrlis 1991) to become chaotic.

A numerical solution is again necessary to examine these possibilities. We begin by
recasting (4.4) in the canonical form used by previous authors for KS so as to make
explicit the length scale of periodicity of the numerical solution. Since all of the terms
in (4.4) (except the O(1) convective term) are O(σJ0/λ) or higher, we introduce a long
time scale τ ∼ O(J0/λ)

−1 to access their dynamics. Letting x = z
√
ν, Θ = 6ξ/

√
ν,

T = (νJ0/3mλ)τ transforms (4.4) into

ΘT +
6λ

J0ν1/2
Θx −ΘΘx + (Θxx + νΘxxx)− 2σ

[
1

ν
f1Θ +

1√
ν
f2Θx

]
= 0, (4.5)

where both f1 = f1(kx/
√
ν) = φxxxx+φxx and f2 = f2(kx/

√
ν) = φxxx+φx represent the

contributions of the corrugated wall. A brief interpretation is warranted. Balancing
the circumferential Θxx and longitudinal curvatures νΘxxxx yields a length scale ν1/2

in the z- (now x-) domain. The critical wavenumber in these units and the number
of unstable waves in the periodic domain (of length 2π) in x on which we solve (4.5)
are both 1/

√
ν. The amplitude of Θ at which the nonlinearity becomes important can

also be estimated as ν−1/2 by balancing the nonlinear and capillary terms. A balance
with the unsteady term gives the time scale ν. The wall’s wavenumber k enters via φ
and is taken as an integral number nk of

√
ν, i.e. k = nk

√
ν. Previous authors have

mapped out the qualitative behaviours of solutions to KS as a function of this sole
parameter ν for cosine initial conditions of unit magnitude in these units. Since KS
is nonlinear, these qualitative behaviours may be initial-condition dependent. These
authors (e.g. Smyrlis & Papageorgiou 1990) find that to obtain chaotic motions, long
periodic domains, i.e. ν small, are required, although below the largest ν for chaos,
there are numerous intervals of ν where solutions exhibit various types of regularity,
interspersed within ν regions characteristic of chaos. In our numerical simulations, we
typically use 36 modes to solve (4.5) and apply Gear’s method to solve the temporal
evolutions within 0.1 % absolute error tolerance.

We begin by verifying that the linear portion of equation (4.5) also has the prop-
erty that short-wavelength α disturbances can, via coupling to σ 6= 0 corrugation
wall harmonics, excite unstable long-wave growth. Figure 9 shows the evolution for
ν = 0.03, σ = 0.2. J0/λ = 0.02 and the nonlinear term zeroed out, of an initial
short-wave cosine disturbance with αinitial = 6 > αcrit(= 5.77) and amplitude 0.1 for
a wall having nk = 4. Figures 9–14 show instantaneous interfacial shapes, beginning
with the initial condition as the lowest curve and with subsequent times sequentially
displaced in the upward direction. As expected, the initial perturbation decays, and
at times beyond T ≈ 3.5 (ln(1/σ) ∼ 1.6), the wave α − nk = 6 − 4 = 2 begins to
grow linearly. Next, we consider ν = 0.0222, within a band of values that lead to
5-wave travelling waves (see figure 10(a) and Smyrlis & Papageorgiou 1990), between
regions of ν that yield chaotic solutions, for KS, i.e. for σ = 0. Upon activating
the corrugation, i.e. changing σ from 0 to 0.2, with all other parameters unchanged,
the dynamics loose their regularity, as figure 10(b) demonstrates. This suggests that
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Figure 9. Solution of equation (4.5) for the linear interfacial evolution (without the term θθx) for
the case with corrugation where flow is dominant over surface tension forces. Initial short-wave
disturbance α = 6 is linearly stable. Coupling to wall’s harmonics excites long waves at times of
order ln(1/σ). J0/λ = 0.02, σ = 0.2, ν = 0.03, nk = 4, initial amplitude = 0.1, ∆T = 0.16.

the regularity exhibited by KS for this periodic domain in response to a single-mode
initial condition of unit magnitude can be destroyed by the generation of multiple
wavelength perturbations by the corrugation’s coupling to the wall harmonics. Fig-
ure 11 confirms that for the parameters of figure 10(a), but for a bimodal initial
condition, i.e. containing the disturbance of figure 10(a) with the excited wave from
figure 10(b) superimposed upon it, even KS appears to exhibit chaos.

Finally, we examine a ν value corresponding to chaotic solutions in response to a
cosine initial condition of unit magnitude. Our goal is to see if we can find a case
opposite to that of the last paragraph, i.e. where the dispersion introduced by the
leading-order corrugation can regularize otherwise chaotic solutions. Although we
were unable to find such a regularization of the long time behaviour over the time
scale of our simulation, we were able to see an interesting effect on the approach
to chaos. Figure 12 solves (4.5) at σ = 0 (no corrugation) with an odd-parity initial
condition Θ(x, T = 0) = −0.1 sin(x ) for ν = 0.027 and J0/mλ = 0.02, T = 1; these
numbers correspond to τ ∼ 5000 and initial amplitude ξ = 0.003 in (4.4). This
typical KS evolution exhibits temporal and spatial chaotic motions with four or five
wavelengths in a period of 2π after growth beyond the linear regime, although some
time snapshots appear almost periodic, e.g. T = 4.8, 7.2 and 8.8. Next, we impose
a small corrugation σ = 0.2 for wall wavenumber k = 0.1643nk and initial condition
Θ(x, T = 0) = −0.1 sin(x). For nk = 2 (figure 13) there is a long period where the
interface shape is relatively flat and static before abruptly changing to chaos. Such
an almost static period also occurs for nk = 3 (figure 14), but there it occurs between
chaotic periods and for a shorter duration than for nk = 2. However, for larger nk = 4,
5 (not shown), the evolution is qualitatively almost identical to figure 12. Thus, the
order σ(J0/λ)

2 dispersion introduced by the corrugation for the scaling ε� J0/λ� 1
appears to be too weak to regularize an otherwise chaotic solution at long times in
our simulations, but they do appear to influence the dynamic approach to chaos.
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Figure 10. Corrugation can make chaotic an otherwise regular interfacial motion. Solution of (4.5)
for ν = 0.0222 such that the interface is (a) non-chaotic in the corrugation-free case (σ = 0) and (b)
chaotic for σ = 0.2. nk = 5, initial amplitude = 1.0, ∆T = 0.4.

Whether there is a longer time periodicity corresponding to this weak dispersion
is unclear without much longer simulations. We do note, however, that artificially
multiplying the corrugation term by 100 does indeed yield an (unphysically large)
dispersion that regularizes the interface (not shown), as would be anticipated from
Kawahara & Toh (1988).

5. Summary and conclusions
We have investigated the weakly nonlinear interfacial stability of a core–annular

flow in the presence of an asymptotically thin annulus and small corrugation. This
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Figure 11. Solution to the KS equation (Equation (4.5) with σ = 0) for the same parameters as
figure 10, but with a different initial condition indeed yields chaotic solutions. Initial conditions
chosen to be the wave that is excited by corrugation in figure 10(b).
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Figure 12. Chaotic interfacial evolution according to equation (4.5) without corrugation.
σ = 0, ν = 0.027, initial amplitude = 0.1, ∆T = 0.4.
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Figure 13. Same as figure 12, but with small corrugation σ = 0.2, nk = 2 and ∆T = 0.8. Onset of
chaos is delayed, apparently by the weak dispersion term that is activated by corrugation.

flow is a model for liquid–liquid displacements in pores as occur in secondary oil
recovery and for the film–lens transition of the liquid lining in the terminal lung
bronchioles. Of interest is the stability of the core–annular arrangement, and thus of
the linear and nonlinear interfacial stability and shape. Here, and in WR, we focus
on the impact of the non-uniformity of the radii of the pore or bronchiole. The linear
stability of this system (WR) showed that the corrugation facilitated the coupling
of the initial disturbance α to wall harmonics of k which, for the right choices of
α and k, could potentially excite unstable long waves. The questions motivating this
study included whether this continuous generation of new unstable long waves by
the corrugation could be saturated by the wave steepening nonlinear KS mechanism.
For O(1) values of the parameter J0/λ, the ratio of surface tension to viscous forces,
multiplied by the square of the scaled mean film thickness, the answer was yes, and the
evolution acquired a temporal periodicity for σ 6= 0 that corresponded to the otherwise
steady waves passing through the wall’s crests and troughs. Moreover, a capillarity-
derived weakly nonlinear term in addition to the usual kinematic-condition-derived
weakly nonlinear term biases the dynamics away from chaos and towards regularized
travelling waves.

For J0/λ � 1, capillarity dominates flow, and the weakly nonlinear version of
Hammond’s equation results. Numerical solution suggests an instability that grows
beyond the weakly nonlinear regime, possibly to snapoff. Corrugation changes this
picture, in that, for initial conditions in phase with the wall, the growth seems to slow,
but for most initial conditions not aligned with the wall, the growth seems to be even
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Figure 14. Same as figure 13, but with nk = 3. A period of nearly flat interfacial profiles occurs
between periods of apparently chaotic interfacial motion.

faster. Finally, for ε � J0/λ � 1, although the corrugation growth rate correction
to leading order is dispersive, it appears too weak to regularize otherwise chaotic
motions of the governing weakly nonlinear KS equation. It does, however, appear to
slow the development to chaos for walls where the waves are not too short. On the
other hand, the corrugation’s excitation of unstable long waves by the coupling of
the initial perturbation to the wall’s periodicity does appear capable at this order of
overwhelming some situations/initial conditions that would have otherwise evolved
to travelling waves and instead causes the system to become chaotic.
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